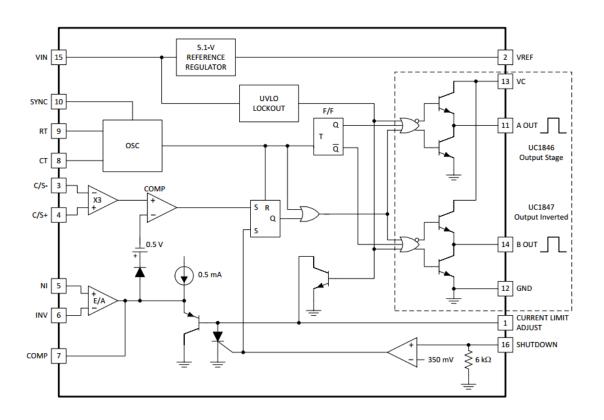
脉宽调制器到底有多少参数需要测试?

一个脉宽调制器到底有多少参数需要测试?

这个问题会被经常问到,而答案往往是:全部手册上面的参数都需要测试。


而实际这是不可能做到的,因为至少有两点我们需要明确:

- 1、器件厂家的资料,一般是给使用者看的,这份 datasheet 的目的是告诉工程师如何使用这个器件,而不是如何测试这个器件:
- 2、这份器件的使用说明书上所罗列的参数,有很多本身就是无法测试的,器件厂家以"设计保证"的方式告诉你这个指标;

器件手册基本都是这样的,只是脉宽调制器参数众多,并且每种器件根据使用方式不同参数都有差异,从测试的角度看,想尽量覆盖手册上的参数难度更大。

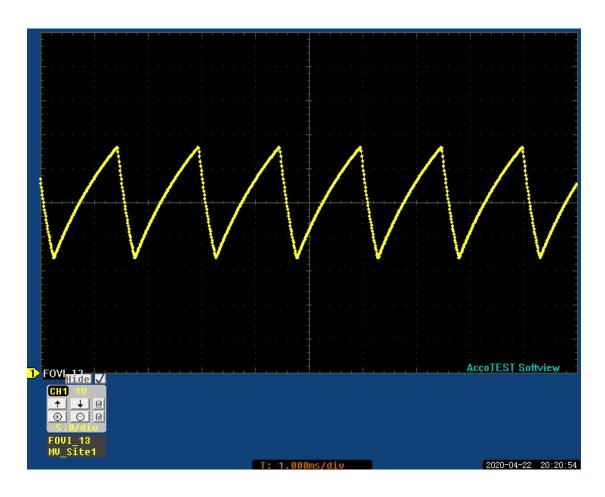
器件手册是给使用者写的,所以并不会一一罗列参数的测试方法,测试工程师面对每一个测试对象,不可能像使用者一样把器件的各个功能都完全掌握,有时测试参数是摸着石头过河的。

测试脉宽调制器时,按照模块划分,再排除一些成品测试本身就无法实现的参数,使用化繁为简的方法,逐步实现测试,不失为一种好的策略。我们来看看下面这个器件——UC1846:

脉宽调制器的器件手册一般都是按照模块划分参数的,并都以内部基准为参数的第一部分,此时你只是在测试一个三端基准:

REFERENCE

Output Voltage	$T_J = 25^{\circ}C$, $I_O = 1 \text{ mA}$	5.05	5.10	5.15
Line Regulation	V_{IN} = 8 V to 40 V		5	20
Load Regulation	$I_L = 1 \text{ mA to } 10 \text{ mA}$		3	15
Temperature Stability	Over Operating Range, ⁽¹⁾		0.4	
Total Output Variation	Line, Load, and Temperature (1)	5.00		5.20
Output Noise Voltage	10 Hz ≤ f ≤10 kHz, T _J = 25°C ⁽¹⁾		100	
Long Term Stability	T _J = 125°C, 1000 Hrs ⁽¹⁾		5	
Short Circuit Output Current	V _{REF} = 0 V	-10 -45		


请先将 Temperature Stability、Total Output Variation、Output Noise Voltage、Long Term Stability 参数划掉,与温度相关的参数如果需要在高低温条件下测试,相当于测试 Output Voltage。噪声是无法实现测试的,不仅仅是因为这个参数只有 uV 级别,更因为测试这个参数需要器件电源和周边环境的噪声极低,那样测试出来的才是器件的噪声。1000 小时的长期稳定性也是单次测试不可能实现的。勾掉这几个参数后(这几个参数手册也标记为设计保证参数),基准部分参数减半:输出、电压调整率、电流调整率、短路电流,既可以理解为基准,也可以理解为稳压器,测试起来难度很低。

OSCILLATOR

Initial Accuracy	T _J = 25°C	39	43	47
Voltage Stability	V _{IN} =8 V to 40 V		-1%	2%
Temperature Stability	Over Operating Range ⁽¹⁾		-1%	
Sync Output High Level		3.9	4.35	
Sync Output Low Level			2.3	2.5
Sync Input High Level	Pin 8 = 0 V	3.9		
Sync Input Low Level	Pin 8 = 0 V			2.5
Sync Input Current	Sync Voltage = 3.9 V, Pin 8 = 0 V		1.3	1.5

频率部分同理删除温度稳定性参数,这里比较关键的是 Sync 的 Input 参数,这是器件同步端使用时需要输入的高低电平,手册的意思是如果使用者需要在同步端施加一个方波信号,请确保高电平大于 3.9V 低电平小于 2.5V。这也就是为什么 Sync 输出参数典型值高电平为 4.35V 低电平为 2.3V。此类输入条件参数一般不是测试参数,如果必须检测这个参数,需要给出 3.9V 以下的高电平和 2.5V 以上的低电平进行验证——必须把这个逻辑关系想清楚。

在 STS8205 测试系统中,频率可以直接使用时间测量单元测试,Sync 的高低电平因为是振荡的,因此可以使用软件示波器的方式直接将该波形扫描下来,这里需要注意器件振荡频率和软件示波器的采样速度,一般将器件频率调整到比较低的频率,更有利于采样。

上图为某器件 CT 端振荡端波形,使用 FOVI 软件示波器读取。

ERROR AMPLIFIER

Input Offset Voltage			0.5	5
Input Bias Current			-0.6	-1
Input Offset Current			40	250
Common Mode Range	V _{IN} = 8 V to 40 V	0		V _{IN} - 2 V
Open Loop Voltage Gain	ΔV_0 = 1.2 to 3 V, V_{CM} = 2 V	80	105	
Unity Gain Bandwidth	$T_J = 25^{\circ}C^{(1)}$	0.7	1.0	
CMRR	V _{CM} = 0 V to 38 V, V _{IN} = 40 V	75	100	
PSRR	V _{IN} = 8 V to 40 V	80	105	
Output Sink Current	V_{ID} = -15 mV to -5 V, V_{PIN7} = 1.2 V	2	6	
Output Source Current	V_{ID} = 15 mV to -5 V, V_{PIN7} = 2.5 V	-0.4	-0.5	
High Level Output Voltage	R_L = (Pin 7) 15 k Ω	4.3	4.6	
Low Level Output Voltage	R_L = (Pin 7) 15 k Ω		0.7	1

误差放大器部分参数可以不测试的为单位增益带宽,这个参数本身就是器件手册注释的(1)设计保证,成品不需要测试。其他参数则是常规的运算放大器直流参数,使用 STS8205 的脉宽调制器类别板就可以直接测试,因为这个类别板上配置了一个单独的运放环路,专门用于测试脉宽调制器运放部分的参数。

Maximum Differential Input Signal (V _{PIN 4} -V _{PIN 3})	Pin 1 Open ⁽²⁾ ; R _L (Pin 7) = 15 kW	1.1	1.2	
Input Offset Voltage	V _{PIN 1} = 0.5 V, Pin 7 Open ⁽²⁾		5	25
CMRR	V _{CM} = 1 V to 12 V	60	83	
PSRR	V _{IN} = 8 V to 40 V	60	84	
Input Bias Current	V _{PIN 1} = 0.5 V, Pin 7 Open ⁽²⁾		-2.5	-10
Input Offset Current	V _{PIN 1} = 0.5 V, Pin 7 Open ⁽²⁾		0.08	1
Input Common Mode Range	×	0		V _{IN} -3
Delay to Outputs	$T_J = 25^{\circ}C^{(1)}$		200	500

这一部分参数是整个器件里面最不好理解的,首先删除 delay to output 这个设计保证参数,然后 Input Common Mode Range 是这部分电路的输入共模电压范围,这属于器件工作条件的参数,目的是告诉使用者使用时这部分的共模电压不能超出范围,因此这不是一个可以测试的参数。(这里可以以反向思维理解一下这个参数:如果施加了大于 Vin-3 的共模电压,器件没有损坏,那么这个参数测试的最大值就可以大于 Vin-3,超过了器件要求的最大值,所以器件不合格?这显然不合理。)

这部分的其他参数需要基于整个器件的理解,包括阅读器件手册中文字部分,读懂器件工作原理后才能够一一实现测试,在这里就不详细讲解了。

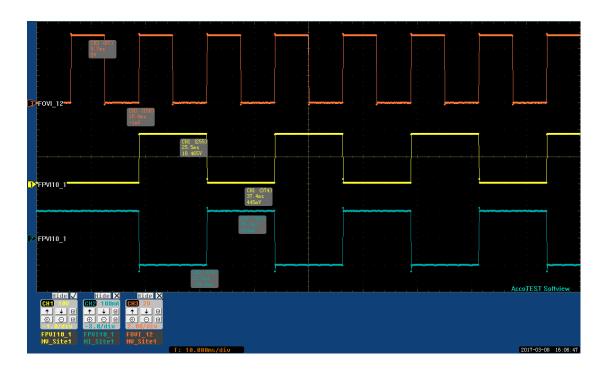
SHUTDOWN TERMINAL

Threshold Voltage		250	350	400
Input Voltage Range		0		V_{IN}
Minimum Latching Current (I _{PIN1})		⁽⁴⁾ 3.0	1.5	
Maximum Latching Current (I _{PIN1})			⁽⁵⁾ 1.5	0.8
Delay to Outputs	$T_J = 25^{\circ}C^{(1)}$		300	600

器件关断部分的电路很简单,两个删除的参数和上一部分同理,其他参数需要参考手 册图 9 的逻辑设计测试方法。

下面重点参数来了:

OUTPUT


Collector-Emitter Voltage		40		
Collector Leakage Current	$V_C = 40 \ V^{(6)}$			200
Output Law Laval	I _{SINK} = 20 mA		0.1	0.4
Output Low Level	I _{SINK} = 100 mA		0.1 0.4 13.5 13.5 50	2.1
Output High Level	I _{SOURCE} = 20 mA	13	13.5	
	I _{SOURCE} = 100 mA	12	0.4 13.5 13.5	
Rise Time	C _L = 1 nF, T _J = 25°C		50	300
Fall Time	C _L = 1 nF, T _J = 25°C		50	300

脉宽调制器的输出应该是最难测试的参数,这里绝大多数是输出高电平的测试。在这之前,先把两个时间参数删除,因为他们是设计保证。(其实上升时间和下降时间很好测试,有一些手册这两个参数并不是设计保证参数,有一些手册这两个参数是典型值,使用 STS8205 的时间测试单元可以很简单的测试到它们) 40V 下的漏电流测试很简单,是器件输出关闭状态下施加 40V 电压测试漏电,而 C-E Voltage 这个参数和漏电参数性质基本一致,个人认为可以不必测试,下面说说最难实现的 Voh,这个参数的难点在于:

- 1. 器件输出常态为振荡,器件高电平状态无法长时间保持;
- 2. 器件高电平状态需要带负载测试,并且负载电流较大,达到了 100mA (有些脉宽 调制器达到了 200mA);

这两条足够给 Voh 的测试带来很大的困难,因为我们不是器件的设计者,无法 100%确定应该使用怎样的方法使器件输出保持高的状态。在最初测试脉宽调制器时,我们总是想办法让器件高电平保持住,但成功率很难达到 100%。也就是说不能使用这种方法确保测试全部器件的 Voh,总有一些器件"不听话",这个问题困扰了我们很久。

直到 STS8205 的 VI 源具有了更快的测试采样速率,更强大的软件示波器功能,才使得这个问题得以解决。在解决脉宽调制器的 Voh 测试问题时,我们还获得了一项测试专利。

所以我们决定在下一期仔细说说我们是如何一步步实现 Voh 的测试的,这期篇幅有限,就用上图做个预告吧。

UNDERVOLTAGE LOCKOUT								
Start-Up Threshold		7.7	8.0					
Threshold Hysteresis		0.75						
TOTAL STANDBY CURRENT								
Supply Current		17	21					

脉宽调制器的整体部分是最好测试的,电源电流和器件开启/关闭工作的电压这些参数 都非常简单。

综上所述,开发比较复杂的专用模拟器件,最重要的是多阅读器件手册,建议从官方 网站尽量多的查看相关材料(官网资料更丰富,有时会有中文内容),看一看能否尽量提升 了测试覆盖率,是否测试了那些最关键的参数。当然也要了解自己手里的工具,测试设备 是否具备测试这些参数的能力,调试时则要化繁为简,将复杂的参数转化为一个个简单的 参数,逐渐摸清楚器件的工作原理。

最后附上 UC1846 的测试结果,我们脉宽调制器的参数测的确实很全面!

	PART_ID		Min	Max	1	2	3	4	5	6	7
	PASSFG				Pass	Pass	Pass	Pass	Pass	Pass	Pass
1	Vref	V	5. 050	5. 150	5. 105	5. 105	5. 105	5. 105	5. 105	5. 105	5. 105
2	Si	mV	0.00	15.00	2.67	2. 73	2.77	2.68	2.72	2.80	2. 79
3	Sv	mV	0.00	20.00	6. 40	6. 53	6. 46	6.47	6.52	6.55	6. 56
4	Io	mA	-100.00	-10.00	-43. 82	-43.60	-43.50	-43. 44	-43. 39	-43.34	-43. 29
5	Vos	mV	-5. 00	5. 00	-1.02	-1.02	-1.02	-1.01	-1.02	-1.01	-1.01
6	Ib1	uA	-1.000	1.000	-0. 172	-0. 171	-0. 171	-0. 171	-0.172	-0. 171	-0. 171
7	Ib2	uA	-1.000	1.000	-0. 185	−0. 185	-0. 185	-0. 185	-0. 185	-0. 184	-0. 184
8	Ib	uA	-1.000	1.000	-0.179	-0. 178	-0. 178	-0. 178	-0.178	-0.178	-0. 178
9	Ios	uA	-0.250	0.250	-0. 013	-0. 013	-0. 013	-0. 013	-0.013	-0.013	-0. 013
10	Avo	dВ	80		103	100	99	100	100	100	101
11	CMRR	dВ	75		124	126	131	128	131	128	129
12	PSRR	dВ	80		95	95	95	95	95	95	95
13	0PVoh	v	4.30		4. 69	4. 69	4. 69	4. 69	4.69	4.69	4. 69
14	OPVo1	v	0.00	1.00	0.75	0.74	0.74	0.74	0.74	0.74	0.74
15	OPIo1	mA	2.00		9. 62	9. 61	9. 61	9. 61	9.61	9.61	9. 61
16	0PIoh	mA.		-0.40	-0. 58	-0.58	-0. 58	-0. 58	-0. 58	-0. 58	-0.58
17	Freq-A	KHz	42.00	52.00	42. 59	42.57	42. 56	42.56	42. 55	42. 57	42.56
18	Freq-B	KHz	42.00	52.00	42. 57	42.57	42. 57	42.57	42. 56	42. 56	42.57
19	Fvs	%	-2.00	2.00	-1.61	-1.61	-1. 62	-1.62	-1.62	-1.61	-1.61
20	THsync	V	2.500	3.900	3. 014	3. 014	3. 015	3.015	3. 015	3. 015	3. 016
21	_	mA	0.000	1.500	1.068	1.068	1. 065	1.068	1.068	1.068	1. 068
22	Isync UVLO	V	0.00	8.0	7.9	7.9	7. 9	7.9	7.9	7.9	7.9
23		v	0.0	0.0	0.9	3	0.9			0.9	0.9
24	HY Vshut	V	0.20	0. 40	0.34	0.9 0.34	0. 34	0.9	0.9	0.35	0.34
						3		0.35	0.34		
25	Ilatch	V 17	0.80	3.00	1.70	1.70	1.70	1.70	1.70	1.70	1.70
26	VosCL	٧	0.45	0.55	0.49	0.49	0. 49	0.49	0.49	0.49	0. 49
27	IbCL	uA "	0.00	30.00	6.58	6. 59	6. 59	6.59	6. 59	6.59	6. 59
28	CSGain	V	2.50	3.00	2.80	2.80	2. 80	2.80	2.80	2.80	2. 80
29	CSvos	mV	0.00	25.00	7.00	6.00	6. 00	6.00	6.00	6.00	6. 00
30	Vimax	٧	1.10	10.00	1.30	1.30	1. 30	1.30	1.30	1.30	1. 30
31	CSib1	uA	-10.00	10.00	-1.03	-1.06	-1.00	-1.06	-1.03	-0.97	-1.09
32	CSib2	uA	-10.00	10.00	-0.93	-0.90	-0.90	-0.93	-0.84	-0.87	-0.93
33	CSios	uA	-1.00	1.00	0.10	0. 16	0. 10	0.13	0. 19	0.10	0. 16
34	CSpsrr	dB	60	150	84	84	84	84	84	84	84
35	VoH	V	13.000		13. 553	13. 555	13. 557	13. 558	13. 559	13. 550	13. 561
36	VoL	V	0.000	0.400	0. 104	0. 103	0. 104	0.104	0. 104	0. 104	0. 104
37	VoH	V	12.000		13. 457	13. 459	13. 460	13. 461		13. 442	13. 464
38	VoL	V	0.000	2. 100	0.618	0. 585	0. 618	0. 751	0.641	0. 587	0. 588
39	VoH	V	13.000		13. 554	3	13. 557	: =	13. 354	13. 560	13. 561
40	VoL	V	0.000	0.400	3	0. 104			-	0. 104	0. 104
41	VoH	V	12.000		13. 445	13. 459				13. 463	13. 443
42	VoL	V	0.000		0. 585	0.618		0. 586	0. 587	0.619	0. 651
43	Ileakage	uA	0.0	200.0	85. 5	85.1	85. 1	84.8	85. 1	85.1	85. 5
44	Vce	V	40.0		41.7	41.7	41.7	41.7	41.7	41.7	41.7
45	Ileakage	uA	0.0	200.0	85. 1	84.8	84. 4	84.8	85.5	84.8	85. 1
46	Vce	V	40.0		41.7	41.7	41.7	41.7	41.7	41.7	41.7